Shaker Control in the Presence of Nonlinearities

Kelly Brinkley, University of Denver Steve Holman, Montana State University Kai Yu, Stanford University

Mentor: Matt Bement, LANL Staff

Motivation

- Shaker control systems are required to remove shaker dynamics and coupling effects
- Nonlinearities in a structure or environment can influence input force and measured response in a vibration or accelerated aging tests
- Desire to eliminate nonlinear effects using a shaker controller

Outline

- **Experimental Setup**
- **Nonlinearity**
- **Modal Parameter Extraction**
- **Extended Kalman Filter**
- Feedback Linearization Controller
- Results

Experimental Setup

PC (not pictured) containing NI PCI 6052E data acquisition card, XPC real-time OS

National Instruments SC-2345 Signal Conditioner

Labworks PA-138 Amplifier

Labworks ET-132-2 Shaker

Aluminum Cantilever Beam (61cm x 5.1cm x .32cm)

PCB 352A24 Accelerometer

Strategy

- Design a controller to track a 0.5V amplitude, 10 Hz sinusoid without the magnet
- Add magnet and observe tracking with the same controller
- Attempt to remove nonlinearity using feedback linearization controller
 - Use extended Kalman filter to estimate parameters
 - Obtain modal parameters for use in Kalman filter

Controls Background

- Tracking controller makes the output and input waveforms the same
- Relatively easy for single frequency, harder for multiple frequencies

Nonlinearity – Equilibrium Points

First equilibrium point

Second equilibrium point 1.2 cm away

Magnetic force modeled as:

$$F = \frac{C}{d^3}$$

Nonlinearity - Tracking

 Tracks 0.48V sinusoid, but 0.5V sinusoid reaches a "remote, non-periodic attractor"

Modal Parameter Extraction

- Impact hammer test on free beam (shaker not attached) and SEREP reduction on FEA data (high fidelity)
 - SEREP reduced mass and stiffness matrices do not require the original system mass and stiffness matrices.
 - Subsequent reduced mass and stiffness matrices.
- Generalized inverse of analytical modal vectors
 - Compare to reduced matrices via generalized inverse – exact same
- Generalized inverse of experimental modal vectors
 - Compare good agreement

Modal Parameter Extraction

- Apply above procedure to true beam (shaker attached) and obtain mass, damping, and stiffness matrices to be used in extended Kalman filter
- Comparison between analytical and experimental through MAC and POC

Modal Assurance Criteria with Quill			
0.9947	0.0550	0.0624	
0.0314	0.9963	0.2253	
0.0785	0.0752	0.9664	

Pseudo Orthogonality Check with Quill			
0.9977	-0.0625	0.0243	
-0.0059	-0.9978	-0.0664	
-0.1004	0.1810	-0.9783	

Extended Kalman Filter

Purpose

• Estimate parameters of the magnetic force: C, Δ_1 , and Δ_2

Method

- Extended Kalman Filter (EKF) is a predictor/corrector technique
- First estimates the state and error covariance
- Updates estimates using the Kalman gain

Extended Kalman Filter: Implementation

• Magnetic force
$$F = \frac{C(\Delta_1 - x_3)}{[(\Delta_1 - x_3)^2 + \Delta_2^2]^2}$$

Assume a 3 degree of freedom model

- Verify convergence in the model with simulations
- Incorporate experimental displacement and modal parameters into the filter
- Verify filter predictions by determining equilibrium points

Results: Extended Kalman Filter

Simulated

Converges for C, Δ_1 , and Δ_2

• Initial estimates must be within $\pm 50\%$ of actual parameter values

Experimental

- C oscillates in the range of ±10⁻⁵ N•m³
- Δ_1 and Δ_2 do not converge, but stay in the same order of magnitude

Results: Model Verification

Equilibrium Points

- For C = 1.05e-7, Δ_1 = 0.0082m, and Δ_2 = 0.0008m, only one equilibrium point at 0.0080m
- Decrease C to 1e-8 to find three points at 0.00016m, 0.0058m, and 0.0080m

Feedback Linearization Controller

Acceleration without Magnet

Acceleration with Magnet

Feedback Linearization Controller

Resultant Acceleration

$$\ddot{x} = Pv_l$$

$$\ddot{x} = PV_n + BF_m(x)$$

$$V_n = v_l - P^{-1}B F_e(x)$$

$$\ddot{x} = Pv_1$$

Results: Feedback Linearization Controller

- **Tracking significantly** improved at 0.5V amplitude sinusoid
- Controller did not adversely affect tracking of lower amplitudes
- At higher amplitudes, required voltage exceeded capabilities of D/A channel

Summary

- We compensated for the nonlinearity
- Extended Kalman filter and equilibrium point check provided acceptable starting point for feedback linearization controller
- Recommendations for future research:
 - Apply technique to a more complex structure
 - Apply technique to a less well-defined nonlinearity
 - Create control to track over frequency range and test feedback linearization controller

Acknowledgements

- The completion of this project is largely due to the contribution and help from the following:
 - Dr. Matt Bement, for his guidance on all aspects of this project
 - Dr. Peter Avitabile, for his help with data reduction, correlation, system matrix estimation and software
 - Dr. Charles Farrar, for enabling this project to exist by hosting and managing the Dynamics Summer School
 - Department of Energy and the ESA Division, for providing funding for the Dynamics Summer School
 - Vibrant Technologies
 - The Mathworks, Inc.
 - **Dynamic Design Solutions**
 - Hibbitt, Karlsson, and Sorensen, Inc.

Questions and Comments

Modal Parameter Extraction

Feedback Linearization Controller

